
Parallel Computing 14 (1990) 89-97 89
North-Holland

Optimal parallel merging and sorting
algorithms using eN processors
without memory contention

Jau-Hsiung H U A N G

Department of Computer Science and Information Engineering, National Taiwan Unioersity,
R.O.C.

Leonard K L E I N R O C K

Computer Science Department, University of California, Los Angeles, Los Angeles, CA, USA

Received August 1989
Revised November 1989

Taipei, Taiwan,

Abstract. A multi-way parallel merging algorithm is described to merge two sorted lists each with size N on a
shared-memory parallel system. The structure of this algorithm is very regular and highly parallel. It is shown
that using P processors, the time complexity of this algorithm is O(N/P) when N >/p2, which is known to be
optimal. This approach for parallel merging leads to a multi-way parallel sorting algorithm with time complexity
O(N log N) /P) when N~> p2. Clearly this is also optimal. In addition, these two algorithms do not require
reading from or writing into the same memory location simultaneously, hence they can be applied on a EREW
machine. In cases when N < p2, we recursively apply this merging algorithm to show that for P = N (2k-1)/2k,
the complexities of the merging algorithm and the sorting algorithm are O(3kN/P) and O(3k(N log N) /P)
respectively.

Keywords. Merging, sorting, shared-memory multiprocessor, complexity analysis, multi-way merging and
sorting.

1. Introduction

The per formance of a parallel a lgori thm is normal ly measured in terms of the number of
processors, P , used and the time complexity, T (N) , required. It is well known that a parallel
merging algori thm is opt imal if O (P . T (N)) = O (N) . Similarly, a parallel sort ing algori thm is
opt imal if O (P . T (N)) = O (N log N) . In this paper we denote log as the logar i thm based on 2.
There are a variety of algorithms in which parallel merging and sort ing are designed
[1,4,7,9,10,12-15]. Taxonomies of parallel sorting algori thms can be found in [2,3,11].

In a shared-memory parallel system, we assume that there are P processors sharing a global
memory space. Each processor can read f rom or write into any m e m o r y location. Depending on
whether concurrent read f rom or concurrent write into a memory is allowed, shared-memory
parallel systems a reca tegor ized into the following four groups:

(a) C R C W (Concurrent Read Concurrent Write) machines: bo th concurrent read f rom and
concurrent write into a memory locat ion by more than one processor is allowed.

(b) C R E W (Concurrent Read Exclusive Write) machines: concurrent read f rom but not
concurrent write into a m e m o r y location by more than one processor is allowed.

0167-8191/90/$03.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)

90 J.H. Huang, L Kleinrock / Optimal paralM merging and sorting algorithms

(c) ERCW (Exclusive Read Concurrent Write) machines: concurrent write into but not
concurrent read from a memory location by more than one processor is allowed.

(d) EREW (Exclusive Read Exclusive Write) machines: neither concurrent read from nor
concurrent write into a memory location by more than one processor is allowed.

It has been shown that every CRCW algorithm that requires time T(N) (where N is the size
of the input or output data) using P processors can be transformed into an EREW algorithm
which requires time O(T(N)log N) still using P processors [8].

An early work in parallel merging and sorting was the sorting circuit due to Batcher [5] with
O(P. T(N)) = O(N log2N). This construction is an implementation of odd-even mergesort.
Later, [7,10,14,15] presented optimal merging algorithms for CRCW and CREW machines.
Recently, [1] gave a sorting algorithm that used N processors in O(log N) time by constructing
an O(log N)-level sorting circuit. More recently, [4] described an optimal merging and sorting
algorithm for P <~ N/log2N running on an EREW machine. To compare the sorting algorithm
in [4] with our algorithm, both sorting algorithms are mergesort algorithms and the concurrency
occurs during the merging phase. However, the merging algorithm in [4] involves a selection
algorithm to find the appropriate sublists for each processor to merge; while in our merging
algorithm, merging two lists is simply done by three merging runs and each merging run
employs all processors concurrently. Our algorithm is more straightforward in idea and
implementation while the algorithm in [4] uses more processors to achieve optimal complexity.

Batcher's merging exchange algorithm [5] first separated each of the two lists into odd and
even sublists. It then merges both of the odd sublists and both of the even sublists concurrently.
This is why it is an implementation of the odd-even merging algorithm. Hence, this algorithm
can be regarded as a two-way merging algorithm since it only parallelly merges the odd
sequences and the even sequences simultaneously. Batcher's algorithm does not achieve the
optimal complexity. We extend this two-way merging approach into a multi-way merging
algorithm which divides each of the two lists into P sublists and uses P processors to merge
these 2P sublists from both lists concurrently to obtain an optimal time complexity when
N = p2. In this paper, we first describe a multiway parallel merging algorithm which achieves an
optimal time complexity when N >/p2. The same approach is used to develop an optimal
multi-way parallel sorting algorithm when N >/p2. The contribution of this paper is the
regularity and the simplicity of these algorithms.

If N < p2, it is shown that by recursively applying the multi-way merging algorithm, we
(2 k - 1)/2 k

achieve a merging algorithm with time complexity O(3kN/P) using P = N processors
for k >/1. Similarly, the sorting algorithm has a time complexity of O(3k(N log N)/P) using
P = N (2k-a)/2k processors for k >/1.

Section 2 describes the multi-way parallel merging algorithm and Section 3 describes the
multi-way parallel sorting algorithm. A conclusion is given in the last section.

2. Multi-way parallel merging algorithm

The input of the multi-way parallel merging algorithm is two sorted lists with equal size and
are denoted as L 1 and L2. For ease of explanation, we assume these 2N elements are all
distinct. However, the same algorithm still applies when these 2N elements are allowed to have
the same value. Further, we assume the memory addresses occupied by L 1 is from 1 to N and
the memory addresses occupied by L 2 is from N + 1 to 2N. We would like to merge L1 and L 2

into one sorted list using P processors. We first describe the algorithm when N = p 2 . We then
extend this approach to cases when N > p2 and N < p2. To begin with, we number all the
processors and denote Pi as the ith processor (1 < i ~< P).

J.H. Huang, L. Kleinrock / Optimal parallel merging and sorting algorithms 91

2.1. Cases when N = P 2

This algorithm is separated into four steps. Follows we explain the algorithm in each step. In
Step 1, we divide L 1 into P sorted sublists in such a way that each sublists contains elements
which are P positions apart and each sublist contains P elements. The i th sublist (1 ~< i < P)
contains elements at locations i, i + P, i + 2 P i + (N / P - 1)P. Similarly, L 2 is divided
into P sublists in the same way. Therefore, the ith sublist in L 2 contains elements at locations
N + i , N + i + P, N + i + 2 P N + i + (N / P - 1) P .

In Step 2, we assign Pi to merge the i th sublist from L 1 and the ith sublist from L 2
(1 ~< i < P). All processors work simultaneously. Note that each processor puts the merged
result back to the corresponding memory locations which were originally occupied by the two
sublists it merges. That is, Pi puts its merged result into memory locations i, i + P, i +
2 P , . . . , i + (N / P - 1) P , and N + i , N + i + P , N + i + 2 P N + i + (N / P - 1) P . Obvi-
ously, all processors concurrently merge two sorted sublists each with size N / P , hence, all
processors will finish approximately at the same time in 2 N / P time units. Note that every
processor works in the memory locations assigned to the two sublists it merges and which do
not overlap with the memory locations in which other processors work. Therefore, no concur-
rent read from or write into a memory location is required. As we will later prove in Lemma
2.1, after Step 2, every element is at most a distance P from its final position! The final
position of an element is defined as the position of this element in the final sorted list.

After Step 2, L 1 and L 2 are mixed together to become a large list occupying locations from
1 to 2N. In Step 3, we first group this entire list into 2P non-overlapping groups with P
consecutive elements in each group. We number these groups from 1 to 2P; hence, the ith
group occupies the memory locations from (i - 1)P + 1 to iP. Note that each group is a sorted
sublist as will be proved in Lemma 2.2. We then assign Pi to merge groups 2i - 1 and 2i (i = 1,
2 P). As in Step 2, all P processors concurrently merge two sorted sublists each with size P
and there is no overlapping in memory locations between processors. Note also that each
processor also puts the merged result back to the corresponding memory locations originally
occupied by those two groups it merges.

In Step 4, we again group the entire list after Step 3 into 2P non-overlapping groups with P
consecutive elements in each group as in Step 3. We then assign Pi to merge groups 2i and
2i + 1 for i from 1 to P - 1. Note that only P - 1 processors are used and the first and the last
groups are not processed in this step. All P - 1 processors concurrently merge two sublists each
with size P and no overlapping in memory locations between processors. As before, the merged
result is put back to the corresponding memory locations. As will be proved in Theorem 2.4,
the resulting list is sorted after this step. In brief, the flow of the algorithm is given below.

Algorithm.
Step 1: Divide L1 into P sublists where the i th sublist contains elements at locations i, P + i,

2 P + i N - P + i. Also divide L 2 into P sublists similarly.
Step 2: Have Pi merge the ith sublist from L 1 and the i th sublist from L 2 and put the result

back to the locations originally occupied by these two sublists for 1 ~< i ~< P. All P
processors work simultaneously.

Step 3: Group the resulting list after Step 2 into 2P groups with P consecutive elements in
each group. Number these groups from 1 to 2P. Have P~ merge groups 2 i - 1 and 2i
and put the result back to the locations originally by these two groups for 1 ~< i ~< P. All
P processors work simultaneously.

Step 4: Group the resulting list after Step 3 into 2 P groups with P elements in each group.
Number these groups from 1 to 2P. Have P~ merge groups 2i and 2i + 1 and put the
result back to the locations originally occupied by these two groups for 1 ~< i ~< P - 1.
All P - 1 processors work simultaneously.

92 J.H. Huang, L. Kleinrock / Optimal paralM merging and sorting algorithms

L1

L2

3 P1

5 P2

7 P3

12 P4

13 P1

31 P2

41 P3

47 P4

52 m

53 P2

63 P3

71 P4

81 P1

96 P2

102 P3

214 P4

" ~ - P 1

9 P2

14 P3

26 P4

28 P1

36 P2

45 P3

54 P4

58 P1

62 P2

75 P3

76 P4

121 P1

137 P2

190 P3

211 P4

(a)

1 "=' 1
5

7

12" P1
3

9

14

26

13

31

41

47
28 ' P2

36

45

54

5 3 "

63

71 P3

62

75

76

81

96

102

211 P4
121

137

190

214

(b)
Fig. 1. An example.

1

3

5

7

9

12

14

26

13

28

31

36

(c)

P1

J
P2

P3

1

3

5

7

9

12

13

14

26

28

31

36

41

45

47

52

53

54

58

62

63

71

75

76

81

96

102

121

137

190

211

214

(d)

Example. Figure 1 shows two sorted lists of equal size with N = 16 and P = 4 as shown in Fig.
l(a). After Step 2 in the algorithm we have the list as shown in Fig. l(b). After Step 3 we have
the list as shown in Fig. l(c). After Step 4 we have the final sorted list as shown in Fig. l(d) and
the algorithm is completed.

Lemma 2.1. After Step 2, every element is within +_ P positions from its final position.

Proof. In Step 1, we define Lli to be the sublists assigned to P, for merging from L 1. Similarly,
L2i is the sublist assigned to Pi from L 2. Without loss of generality, we examine the elements
assigned to Pi. We assume that X is the nth element in L2i (i.e., X is the [i + (n - 1)P]th
element in L2) as shown in Fig. 2. Figure 2(a) shows lists L 1 and L 2 before Step 2 and Fig.
2(b) shows the result after Step 2. For X, one of the following three cases may happen. Case 1:
there are elements A and B in LI~ where A is the mth element in L u (i.e., A is the
[i + (m - 1)P]th element in L1) and B is the (m + 1)st element in LI~ (i.e., B is the [i + mP]th

J.H. Huang, L Kleinrock / Optimal parallel merging and sorting algorithms 93

i+mP

N

L2

I

J
1
2

i+(n-1)P

N

original list

i+(m-1)P

i+(m+n-1)P

,¢ 2N

list after
step two Fig. 2.

element is L1) and A < X < B. Case 2: B is the first element in LI~ and X < B. Case 3: A is
the last element in Lli and A < X. We will first prove this lemma for Case 1.

(1) Number of elements smaller than X is at least

[(m - 1) e + i] + [(n - 1) P + i - 1] = [(m + n - 1) P + i] + (i - P - 1)

where (m - 1)P + i dements are from L 1 (i.e., dements smaller than or equal to A) and
(n - 1)P + i - 1 elements are from L 2 (i.e., elements smaller than X).

(2) Number of elements smaller than X is at most

[(m + l - 1) P + i - 1] + [(n - 1) P + i - 1] = [(m + n - 1) P + i] + (i - 2)

where (m + 1 - 1)P + i - 1 elements are from L 1 (i.e., elements smaller than B) and (n - 1)P
+ i - 1 elements are from L 2.

From (1) and (2), the ranking of X in all elements is between [(m + n - 1)P + i] + (i - P)
and [(m + n - 1) P + i] + (i - 1). From our algorithm, the position of X after Step 2 is
(m + n - 1)P + i. Therefore, element X is within a distance P from its final position.

Using the same argument, we can easily prove this lemma for Cases 2 and 3 and this lemma
is hence proved. []

L e m m a 2.2. After Step 2, every group is sorted.

Proof. In Step 1, we denote the 2P elements assigned to Pi for merging to be Ei.~, Ei, 2
E~.2p where E,, k stands for the k th element assigned to P~. Clearly the elements from Eel to

94 J.H, Huang, L Kleinrock / Optimal parallel merging and sorting algorithms

E,, e are from Lx and the rest are from L 2. We further define the k th element from P~ after
Step 2 to be the k th element in ordering among all Ei, k for 1 ~< k ~< 2P after Pi finishes
merging the 2P elements.

To prove this lemma, we prove it for the i th group without loss of generality. Note that there
are P elements in this group and the j t h element (1 ~<j ~< P) in the group is put in by Pj after
Step 2. Also note that the j t h element in this group is the ith element from Pj after Step 2 for
1 ~<j ~< P. In group i, we prove this group is sorted by showing that the j t h element, say X, is
smaller than the (j + 1)st element, say Y, for all j from 1 to P - 1.

Note that every element assigned to Pj+I in Step 1 is greater than the element whose
memory address is one less than it and which is assigned to Pj (e.g., Ej+I,k>Ej, k for
1 ~< k ~< P). Since Y is the ith element from Pj+1 after Step 2 and each element assigned to
~+a is greater than an element assigned to ~ in Step 1, it is hence clear that Y is greater than
at least i elements which are assigned to Pi" Since the ith element from Pj after Step 2 is X;
hence X < Y and the lemma is proved. []

Lemma 2.3. After Step 2, every element in group i is smaller than all elements in group j for
j>~i+2.

Proof. We prove this lemma by showing that the largest element, say X, in the i th group is
smaller than the smallest element, say Y, in the j t h group where j >/i + 2. From Lemma 2.2, X
is the last element in the ith group and Y is the first element in the j t h group. The approach is
similar to the proof of Lemma 2.2.

First note that X is assigned to Pe and Y is assigned to P1 in Step 1. Also note that every
element but two assigned to P1 in Step 1 is greater than the element whose memory address is
one less than it and which is assigned to Pp (i.e., El, k > Ee,k-1 for 2 < k ~< P). The two
exceptions are the two first elements assigned to P~ from both lists (i.e., elements El, 1 from L~
and El,p+ a from L2).

Since Y is the j t h element from P1 after Step 2, Y is greater than at least j - 2 elements
which are assigned to PI,- Since the ith element from Pp after Step 2 is X and j - 2 ~ i; hence
X < Y. []

Theorem 2.4. After Step 4, the entire list is sorted.

Proof. From Lemma 2.3 it is shown that to sort the entire list, an element in group i after Step
2 has to compare with elements only in the (i - 1)st group and the (i + 1)st group since all
elements in group j where j ~< i - 2 are smaller than it and all elements in group k where
k >/i + 2 are greater than it. This is exactly done in Steps 3 and 4 where we merge group i with
groups (i - 1) and (i + 1) respectively. Hence, after Step 4, the entire list is sorted. []

Complexity analysis
In Step 2, we have all P processors merge two sublists each with size N i P concurrently;

hence, the time required for this step is 2 N i P time units. This is also true for Step 3. In Step 4,
we have all P - 1 processors also merge two sublists each with size N i P concurrently; hence,
the time required for this step is also 2 N i P time units. This shows that the total time
complexity of this parallel merging algorithm is O(N/P) . Further, we see that the scale
constant of this time complexity is as small as 3.

2.2. Cases when N > p2

The multi-way parallel merging algorithm can easily be applied in cases when N > p2 with
minor modification. The algorithm is basically the same as the cases when N = p2 except that

J.H. Huan~ L. Kleinrock / Optimal parallel merging and sorting algorithms 95

Steps 3 and 4 are slightly modified. To explain the algorithm, we assume N = M P where
M > P (i.e., N > p 2) .

Algorithm.
Step 1: Divide L a into P sublists where the ith sublist contains elements at locations i, P + i,

2P + i N - P + i. Also divide L 2 into P sublists in the same way.
Step 2: For all i from 1 to P, have Pi merge the ith sublist from L 1 and the ith sublist from

L 2 and put the result back to the locations originally occupied by these two sublists. All
P processors work simultaneously.

Step 3: Group the resulting list Step 2 into 2 M groups with P consecutive elements in each
group. Number these group from 1 to 2M. For all i from 1 to P, assign Pi to merge
groups 2i - 1 and 2i and put the result back to the locations originally occupied by
these two groups. After this is done, for all i from 1 to P, assign Pi to merge groups
2P + (2i - 1) and 2P + 2i. Repeat this procedure until every two consecutive groups
are merged.

Step 4: Group the resulting list after Step 3 into 2 M groups with P elements in each group.
Number these groups from 1 to 2M. For all i from 1 to P, assign Pi to merge groups 2i
and 2i + 1 and put the result back to the locations originally occupied by these two
groups. After this is done, for all i from 1 to P, assign P~ to merge groups 2P + 2i and
2P + (2i + 1). Repeat this procedure until every two consecutive groups are merged
except the first and the last groups.

It is easy to show that the time complexity above is still O (N / P) . Hence, we conclude that
for cases when N > / p 2 , the multi-way parallel merging algorithm achieves the optimal time
complexity O (N / P) .

2.3. Cases when N < p 2

In this section we modify the merging algorithm such that it can be applied to cases when
N < p2. As mentioned earlier, the time complexity in this case is degraded by a factor of 3 ~
using P = N ~2k-~)/2k processors for k >/1.

Recall that in cases when P = v~-, one processor is used to merge two sublists with a total
size 2v~-. If we have more processors (i.e., P > v/-N-), we can apply more than one processor to
merge the 2v/N elements. We illustrate the case when P = N 3/4 as an example. The approach is
shown below.

Step 1: Divide each of L 1 and L 2 into N 1/2 sublists in such a way that each sublist contains
elements which are N 1/2 positions apart. There are N 1/2 elements in each sublist.

Step 2: We want to merge two subhsts using all the processors. Since there are only N 1/2 pairs
of sublists waiting for merging and we have more than N 1/2 processors (i.e., P > Nl/2),
more than one processor can be assigned to merge two sublists. Also, there are N 1/2
element i n each subhst, we can apply the multi-way parallel merging algorithm
mentioned in Section 2.1 by using (N 1 / 2) 1/2 = N 1/4 processors to merge two sublists.
That is, each processor merges two sub-sublists each with N 1/4 elements. Since there
are N 1/2 independent pairs of merging working concurrently, the total number of
processors required is N 1 / E N 1/4 = N 3/4, w h i c h is exactly the total number of processors.
That means all processors work simultaneously.

Step 3: Group the resulting list after Step 2 into 2v~- groups with N ~/2 elements in each
group. We want to merge every two neighboring groups as before. Again, we can use

96 ,1.1-1. Huan~ L. Kleinrock / Optimal parallel merging and sorting algorithms

N 1/4 processors to work on each merging. As in Step 2, there are N 1/2 independent
merging working concurrently, the number of processors required is N 3/4. That means
all processors work simultaneously.

Step 4: Similar to Step 3 except that the group merging starts from group number two.

Here we examine the time complexity of this algorithm. Since we add one more level of the
multi-way parallel merging, the time required will be three times more than the original as
depicted in Section 2.1. By repeatedly nesting this approach on merging two sublists, it can be
shown that we can use P = N (2~-a)/Ek processors for the merging algorithm to achieve a time
complexity of O(3kN/P).

3. Multi-way parallel sorting algorithm

We construct a multi-way parallel sorting algorithm using the merging algorithm described
above. In this section we will only discuss cases when N = p2. The cases when N > p2 and
N < p2 can be done similar to the procedures given in Section 2. This sorting algorithm is
basically a mergesort algorithm except that we use the multi-way parallel merging algorithm to
perform the merging.

We use P = ~ processors to sort 2N elements. For ease of explanation, we assume
P = v~-= 2 k. There are two phases in this algorithm. In the first phase of the algorithm, we
assign 2v~- elements to each processor and have each processor sort its data using any known
optimal sequential sorting algorithm, e.g., quicksort. After phase 1, we have P sorted lists.

In the second phase, we recursively merge two sorted lists into one larger sorted list until
there is only one list which is totally sorted. This is exactly what mergesort does. In mergesort,
we define a run as merging every two neighboring lists into one larger sorted list for all lists.
Hence, each time a run is performed, the number of sorted lists is reduced by half. After phase
one, there are P = 2 k sorted listed; therefore, we need to perform k merge runs to finish the
mergesort. Hence, we divide phase two into k steps. At the beginning of the i th step
(i = 1,2 k), there are 2k/2 i-1 sorted lists each with size 2 k+i. The number of pairs of sorted
lists waiting for merging in this step is 2k/2 i- 1 divided by 2, which equals 2k/2 i. Since there are
totally P = 2 k processors, the number of processors used to merge every two lists is hence 2 ~. In
each step, we concurrently merge pairs of sorted lists using the processors associated with every
two sorted lists. After k steps of merging, there is only one sorted list remained and the
algorithm is completed.

We define N (i) to be the size of each list to be merged and P(~) to be the number of
processors used to merge two lists in step i. If we can show N(~)>~ P (°2 for all i, all steps
achieve an optimal time complexity using the multi-way parallel merging algorithm. This can
easily be proved as follows: N (i) = 2(k+i)>~ 2 i+i= (2i) 2 = P (i)2. From the above proof, it is
shown that every merging in the mergesort obtains an optimal time complexity; therefore, the
entire sorting algorithm is optimal.

Complexity analysis
Since each processor in phase one sorts two lists each with size fN- and all processors work

concurrently, the time complexity of phase one equals the time complexity of any optimal
sequential sorting algorithm which equals O(2v~-log 2v~) . By neglecting the constant multi-
plier, the complexity above equals O((N log f N) / v ~) which in turn equals O((N log N) /P) .

In phase two, the time complexity of the merging in the ith step is O(N(i)/P (i)) =
O(2k+i/2 i) ---O(2 k) = O(N/P) . Note that this time complexity is the same for all steps and

J.H. Huang, L Kleinrock / Optimal parallel merging and sorting algorithms 97

independent of i. Since there are k steps in phase two and k = log P = log ~ = ½ log N, the
total time complexity of phase two equals O ((N / P) k) = O ((N log N / P) . Since both phases
have a time complexi ty as O ((N log N) / P) , the total time complexi ty of this mult i-way parallel

sorting algorithm is O ((N log N) / P) , which is optimal.

4. Conclusion

Multi-way parallel merging and sorting algorithms provide an opt imal time complexi ty using
P ~ ~ processors. Further, these algorithms do not require reading f rom or writing into the
same memory location concurrently; hence, they can be implemented on any kind of parallel
comput ing systems (EREW, E R C W , C R E W , or CRCW). As ment ioned earlier, another
contr ibut ion of these algori thm is the simplicity and regularity of the structure. In addition, we

(2 7~ - 1)/2 k
show that for P = N , the complexatles of the merging algori thm and the sorting
algorithm are o (3 k N / p) and O(3~(N log N / P) respectively.

References

[1] M. Ajtai, J. Komlos and E. Szemeredi, An O(N log N) sorting network, in: Proc. 15th ACM Syrup. Theory
Comput. (1983) 1-9.

[2] S.G. Akl, Parallel Sorting Algorithms (Academic, Orlando, FL, 1985).
[3] S.G. Akl, The Design and Analysis of Parallel Algorithms (Prentice-Hall, Englewood Cfiffs, N J, 1989).
[4] S.G. Akl and N. Santoro, Optimal parallel merging and sorting without memory conflicts, IEEE Trans. Comput.

36 (10) (1987) 1367-1369.
[5] K. Batcher, Sorting networks and their application, in: Proc. AFIPS Spring Joint Comput. Conf. (1968) 307-314.
[6] G. Bilardi and F. Preparata, A minimum VLSI network for O(log N) time sorting, IEEE Trans. Comput. 34 (4)

(1985) 336-343.
[7] A. Borodin and J. Hopcroft, Routing, merging and sorting on parallel models of computation, J. Comput. System

Sci. 30 (1985) 130-145.
[8] D.M. Echstein, Simultaneous memory accesses, Tech. Rep. 79-6, Dept. Comput. Sci., Iowa State Univ., Ames, IA,

1979.
[9] D. Knuth, The Art of Computer Programming. Vol. 3: Sorting and Searching. (Addison-Wesley, Reading, MA,

1973).
[10] C. Kruskal, Searching, merging, and sorting in parallel computation, IEEE Trans. Comput. 32 (10) (1983)

942-946.
[11] S. Lakshmivarahan, S.K., Dhall and L.L. Miller, Parallel sorting algorithms, in: M.C. Yovits, ed., Advances in

Computers (Academic Press, New York, 1984) 295-354.
[12] T. Leighton, Tight bounds on the complexity of parallel sorting, IEEE Trans. Comput. 34 (4) (1985) 344-354.
[13] F.P. Preparata, New parallel-sorting schemes, IEEE Trans. Comput. 27 (7) (1978) 669-673.
[14] Y. Shiloach and U. Vishkin, Finding the maximum, merging and sorting in a parallel computation model, 2 (1981)

88-102.
[15] L.G. Valiant, Parallelism in comparison problems, SIAM J. Comput. 4 (1975) 348-355.

